企业信息

    北京蓝科万佳科技发展有限公司

  • 8
  • 公司认证: 营业执照已认证
  • 企业性质:外资企业
    成立时间:2017
  • 公司地址: 北京市 怀柔区 怀柔地区 卢庄村 兴桥大街一号南楼203
  • 姓名: 郭长河
  • 认证: 手机已认证 身份证已认证 微信已绑定

密封铅蓄电池阻抗参数与荷电态

时间:2018-01-03点击次数:248

密封铅蓄电池阻抗参数与荷电态

蓄电池的交流阻抗特性远比理想的单电要复杂,不同类型的蓄电池的阻抗参数差别很大,其中有些参数有可能用于指示蓄电池的荷电态。密封铅蓄电池的荷电态在50%以上时,电池内阻几乎没有变化,但其电化学反应内阻与双层电容之积,却对荷电态很敏感。

关键词 :密封铅蓄电池;荷电态;交流阻抗;内阻;电导

 

蓄电池的荷电态在文献中有不同的含义。有人 [1] 把它定义为:电池可以放出的容量跟它可以达到的大放电容量之比。也有人 [2] 把它说成是:电池的剩余容量跟它的初始容量或额定容量之比。仔细推敲,这两种含义尚有区别。前者指的是电池在使用期间逐渐退化,即使充足电也放不出原来的容量了;后者指的是电池充电不足或已经放出一部分容量,致使电池的容量低于初始容量或额定容量,一旦充足电,则可能达到或接近初始容量或额定容量。

阀控式密封铅蓄电池广泛用于邮电通信部门,人们非常关心在线使用的蓄电池能还能放出多少电来,一旦市电停电,蓄电池组可否连续正常供电。因而在线检测蓄电池的荷电态就成为电源工作者以及一些仪器生产厂家普遍关心的问题。许多人试图用交流阻抗法测取铅蓄电池内阻,用它在线检知电池荷电态,然而得到的结果并不令人满意 [3] 。本文将根据电化学反应体系交流阻抗原理 [4,5] ,阐明密封铅蓄电池交流阻抗参数的复杂性和某些规律性,供感兴趣的电池工作者、电池使用维护人员和仪器生产厂家参考。愿大家共同努力,开拓新思路,满意地在线检测阀控密封铅蓄电池荷电态。

 

1 单电的交流阻抗

一个简单的处于平衡状态的单电,当有小电流I流过时,电电位将会偏离平衡电位,产生过电流,η,η和I之间的关系可由(1)式来表示:


式中i 0 称为交换电流密度,即电处于平衡状态时电化学氧化和还原速度相等时的电流密度或反应速度;a为能量转换系数;n为参与电反应的电子数;F、R和T分别表示法拉常数、气体常数和**温度。当所加的交流信号很小,约为5~10mV时,则(1)式可简化为:


式中的R e 称为电荷转移电阻。对于电池而言,它由许多片多孔性正和负组成,有人称R e 称为电池的电化学反应内阻或活化内阻。

当电上叠加有5~10mV正弦交流信号时,可以认为电反应是可逆的,此时电表面附近液层中参与电化学反应的粒子的浓度就会变化,出现跟时间有关的扩散层,此时测得的电阻抗Z是由电荷转移电阻R e 和反映浓差化作用的Warbug阻抗所组成:


式中w是角频率,w=2πf; σ称为Warbug系数,对于达到稳态时的简单的平板式扩散过程而言,σ可表示为:


如果电化学反应结果会有一部分物质吸附在电表面,则这分部表面就被覆盖了,就会对总的交流电信号有影响,它跟交流电压的频率相同但位相却不同,这种影响可以用由电阻R 1 和电容C 1 并联组成的电抗来表示。当电上没有电化学反应进行时,此时在正弦交流电压作用下的正弦电流,只用于双层电容C d 的充放电。

根据以上分析,我们可以用图1来表示单电体系的等效电路,其中R Ω 表示电体系的欧姆内阻,它跟交流信号的频率无关,流过电体系的欧姆内阻,它跟交流信号的频率无关,流过它上面的电流和电压信号是同相位的。正是因为电体系的交流阻抗含有电阻、电容和电感三种成分,则总交流阻抗Z应酬 用实部R和虚部X来表示 
Z=R-jX(6)

当交流信号频率足够低时,可以认为电反应是可逆的,此时电反应速度受扩散过程控制,电反应的交流阻抗理论导出 X 和 R 之间存在( 7 )式所法的关系


因而将不同频率下测得的X和R作图(复数平面图),地得到斜率为45°的直线(图2a)。

当交流信号频率足够高时,可以认为电反应是完全可逆的,此时电反应速度受电荷传输电阻Re控制,并且有: 
(R-R Ω -R e /2) 2 +X 2 =(R e /2) 2 (8) 

即X-R复数平面图为半园(图2b),其半径为R e /2,园为心(R Ω +R e /2),园的高点的角频率w m 为: 
w m =1/(C d R e ) 

对部分可逆的电反应而言,其X-R复数平面图如图2c所示。

2 蓄电池交流阻抗特性 
2.1 电池与可逆电阻抗参数的差异 
从上节介绍的单电交流阻抗研究方法的基本原理可以看出,各交流阻抗参数之间的关系是建立在下列假设之上的,跟实际的电池却有差异。

a.研究的对象是单电,是平板式电。可是在电池中,所用的电是多孔性电,其孔径大小和分布是非常复杂的。再者,电池的群是由许多片相互交叉排列并联的板组成的,正负之间存在着相互影响。 
b.所研究的电是处于可逆状态的。可是对于电池而言,其正和负上会同时进行着多个电化学反应,它们所处的状态只能近似可逆状态。

c.待测担忧表面附近液层中反应物和生成物的浓度是保持不变的。可是就蓄电池而言,在每次充放电的初期和终期是会有变化的,而且有时正负反应粒子之间会有影响。

d.在研究电和辅助电之间所加的交流电压信号很小,并且辅助电的电位是不变的。然而测取电池的阻抗参数时,是在电池正负之间叠加交流信号,只有当一个电的可逆性远大于另一个电时,才符合上述假设条件。

由此可以看出,对于一个实际电池体系而言,其内部结构和电华沙牢骚应条件远比单电要复杂得多。但由于蓄电池在开路时其正和负是接**衡状态的,在充放电过程中所进行的电化学反应是接近可逆的,因而我们可以近似地将单电阻抗测试原理用于蓄电池,测取阻抗参数。近20余年来,人们就试图观察蓄电池在不同荷电态下的阻抗参数变化规律,以实现在线检测蓄电池荷电态。

2.2 电池的阻抗 
这是人们研究多的一个参数。根据单电池阻抗原理,蓄电池阻抗是由三部分组成的。

a.欧姆内阻RΩ。它包括柱、栅、活性物质、电解液、隔膜材料、连接条等的电阻。流过RΩ上的电流和电压信号是同相位的,娄值上是成比例的,且跟测量信号的采集时间无关。

b.电化学反应电阻R e 。它是由于在电上进行电化学反应而使电是位偏离平衡电位而产生的。当信号电压小于10mV时,由(2)式和(3)式可知,电流和电压信号是成正比例关系变化的,其值也跟测量信号采集时间无关。

c.浓差化内阻R c .当有外电流流过电池时(充电或放电),板表面附近液层中的生成物和反应物粒子的浓度由于扩散作用而逐渐产生变化,从而导致电电位或电池电压产生变化。此时表现出来的电阻就是浓差化内阻。

阀控密封铅蓄电池的内阻会因测试信号的波形(方波或正弦波)、频率、幅度的不同而包含了不同的成分,那么测得的数值也就理所当然各异了。例如,用频率在200kHz以上的方波或用阶跃电流法测取0.5ms之内的电压降方法测得的电池内阻,可以认为是欧姆内阻 [6] ;如果测试信号幅度较大(10mV以上)或电池的可逆性不太好(例如某些一次电池),则上述内阻值中就应当考虑电化学反应内阻了。

2.3 电池的容抗 
蓄电池对交流信号的响应,表明它是一个非常大的容性器件。蓄电池的容抗主要来源于以下几个方面。

a.双电层电容C d

当电(固相)与电解液(液相)相互接触时,则由两相中各存在剩余电荷所引起的静电相互作用,以及电表面与溶液中的各种粒子(溶剂分子、溶剂化了的离子和溶质分子等)之间的相互使用,使得固液两相界面类似于电容器一样,两侧带有相反的电荷,即双电层。实测结果表明,光滑的电表面双电层电容约为18 μF/cm 2 。一个蓄电池全部电的表现面积均有数百至数千cm 2 。由于电是多孔性的,其真实面积又达到表观面积的数百倍,因而一个电池的双电层电容是很大的。一些电池的双电层电容值可以利用(9)式进行实验测定。

b.法拉容抗

蓄电池进行充放电时就会有电流流过电,但电池电压却在缓慢的变化,共行为类似于电容器的充电或放电。由于这种电容特性是由电化学反应引起的,因而称为法拉容抗。

c.吸附和成相电容

当电解液中存在可被电表面吸附的粒子时或电反应产物是固相时,它们会将电表面一部分蔽盖起来。那么在对电池进行正弦交流信号测量时,它们也会表现出容性特征。

在对蓄电池进行交流阻抗测量时,如果信号频率很低,则容抗就比较大,那么Warbug阻抗中的容抗部分会起主要使用,相角 ?也应当较大;当使用高频信号进行测量时,则容抗就可以忽略了。

2.4 电池的感抗 
当交流信号的频率较高时,测得的电池阻抗中会有感抗在起使用,这主要是由于电池中的多孔性电引起的 [1] 。

电池中的多孔性电,其孔的长度比孔径大得多,并且是在孔的深处进行着电化学反应。正因为如此,跟平板电比起来,多也电的阻抗就具有如下特征:

a.双电层充电电流正比于t -1/2 ,而不是t -1 。

b.扩散传质过程的阻抗依整于跟w -1/4 成比例的项,而不是w -1/2 的项。

c.阻抗图在高频区的半园不跟实轴相交,而是在π/4处断开。

3 密封铅蓄电池荷 电态与阻抗参数

由以上分析可知,铅蓄电池的交流阻抗参数是跟电池的内部结构和变化紧密相关的。荷电态为的电池,正为多孔性二氧化铅,负为多孔性铅;一旦发生放电反应,则多孔性电内部将会变化,生盛誉导电的硫酸铅,并且电解液中的硫酸浓度也会降低。此外,由于生成硫酸铅,使多孔性电内部结构和板体积都有变化,传质过程也随之改变。因此,铅蓄电池的某些阻抗参数应当随电池荷电态的改变而不同。

铅蓄电池内阻虽然是人们研究多的一个参数,其目的是寻求它与电池荷电态的关系,但结果却不能令人满意 [3] 。造成这一结果的原因看来可以从以下两方面来认识。

首先是不同仪器生产研究生产的不同型号规格的电池内阻测量仪,所使用的信号频率不同,测定的参数也不一样(见表1),测定的是含有不同成分的内阻,结果使用不同型号的电阻仪测取同一个电池的内阻,却得到了不同的结果,导致人们对阀控密封铅蓄电池内阻的认识产生了一些误解。由此看来,对测定某种型号蓄电池内阻有效的电池内阻测定仪,却不一定适合于密封铅蓄电池,反之亦然。

 

其次,由于阀控密封铅蓄电池的内阻,在电流荷电态**50%时,几乎没有变化,只在小于50%时才*升高 [8] 。这样虽然可以用电池内阻(或电导)的变化来定性判别电池好与坏 [9] (其误判的可能性达到50%),但却无法用内阻来指示密封铅蓄电池的荷电态 [3][7] 。

除了电池的内阻(或电导)外,文献 [7] 介绍了用(9)式所示的电池电化学反应电阻R e 跟双电层电容C d 的乘积R e C d 来指示铅蓄电池的荷电态,前者在数值上等于铅蓄电池阻抗复数平面图上半园曲线高点的角频率(见图2b)。当铅蓄电池的荷电态在50%~时,R e C d 是非常明显地随荷电态而改变(见图3)。它的变化趋势正好跟铅蓄电池内阻的变化趋势相反。

铅蓄电池之所以具有这一特性,看来这是由于电的比表面积跟电池的荷电态密切相关。前面已经表明,蓄电池的双层电容值很大,并且正比于电的真实表面积。当电池的荷电态处于时,电池的孔率高,真实表面积大,故R e C d 也大;荷电态下降时,放电产物硫酸铅会堵塞电小孔,降低电比表面积,导致双层电容的下降,结果是R e C d 必然明显下降。

有可能用来指示电池荷电态的交流阻抗参数很多,如交流阻抗的模数、实部、虚部、相角、串联电阻或电容、并联电阻或电容等;其中有的已经在其他类型的电池中观察到规律性的变化。例如文献 [10] 报道了可以用等效串联电容Cs来指示碱性锌锰电池的荷电态;文献 [11] 观察到在足够低的频率下测得镉镍电池的交流相角?和等效串(并)联电容随荷电态而近于线性的变化,因而可以用它们来指示镉镍电池的荷电态。

4 结论 
a.交流阻抗法是研究电化学反应的有效方法,但蓄电池的交流阻抗特性远比理想的单电要复杂。

b.有可能用来指示蓄电池荷电态的阻抗参数很多,应根据蓄电池的不同类型适当择取。

c.荷电态在50%以上的阀控密封铅蓄电池是不宜用内阻来指示其荷电态的;但其R e C d 却对荷电态很敏感。

 

参考文献

 

1 Shalini Rodrigues etc.A review of state-of-charge indication of batteries by means of AC impedance measurements.J.Power Sources.2000,87:12~20

2 J.D.Kozlowski etc.Mode-based predictive diagnostics for pri-mary and secondary batteries.The Battery Man,2001,14~29

3 桂长清.阀控密封铅酸蓄电池电导测试原理与实践.电源技术.1999,23:266~270

4 田昭武.电化学研究方法.科学出版社,1984.250~341

5 周伟舫.电化学测量.上海科学出版社1985,124~150

6 Isamu Kurisawa,Masashi Iwata.Internal resistance and edteriora-tion of VRLA for stand-by applications.GS News Technical Re-port.1991,(2):19~22

7 F.Huet.A review of impedance measurements for determination of the state-of-change or state-of-health of secondary batteries.J.Power Sources.1998,70:59~69

8 桂长清,柳瑞华.VRLA的电导与容量的关系.电池.2000,(2):74~76

9 David O.Feder,Mark J.Hlavac,Wim Koster.Evaluating the state-of-health of flooded and VRLA batteries.J.Power Sources.1993,46:391~415

10 S.Rodrigues etc.AC impedance and state-of-change analysis of alkaline Zn-MnO 2 primary cells.J.Appl.Electrochemistry 2000,30:371~377

11 S.Rodrigues etc.Impedance parameters and the state-of-charge(I)Ni/Cd battery.J.Appl.Electrochemistry.1979,9:125~139


http://liuchong1234.cn.b2b168.com